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Abstract

A three-dimensional (3D) transient inverse forced convection problem is solved in the present study using the
Conjugate Gradient Method (CGM) and the general purpose commercial code CFX4.2-based inverse algorithm to

estimate the unknown boundary heat ¯ux in a three-dimensional irregular duct ¯ow problem. The advantage of
calling CFX4.2 as a subroutine in the present inverse calculation lies in that many di�cult but practical 3D inverse
convection problem can be solved under this construction. Results obtained by using the conjugate gradient method

to solve this 3D inverse forced convection problems are justi®ed based on the numerical experiments. It is concluded
that accurate boundary ¯uxes can be estimated by the conjugate gradient method except for the inlet surface and
®nal time. The reason and improvement of this singularity are addressed. Finally, the e�ects of the height of duct,

velocity of the inlet ¯uid and measurement errors on the inverse solutions are discussed. 7 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The direct heat convection problems are concerned

with the determination of ¯ow velocity ®eld and ¯uid

temperature at interior points of a region when the in-

itial and boundary conditions, thermophysical proper-

ties and heat generation are speci®ed. In contrast, the

inverse heat convection problem involves the determi-

nation of the surface conditions (i.e. the surface tem-

peratures and heat ¯uxes) from the knowledge of the

temperature measurements taken on the ¯uid surface.

The inverse heat conduction problems can be seen
quite often in the literature or books [1±5] but not for

the inverse heat convection problem. Huang and Ozi-
sik [6] used conjugate gradient method to estimate the
surface heat ¯uxes in a fully developed velocity inverse

convection problem. Li et al. [7] and Prud'homme and
Nguyen [8] have solved the natural convection pro-
blems. The above inverse problems are all two-dimen-
sional and in regular (rectangular) domain. However,

the three-dimensional inverse convection problems
with irregular domain is never seen in the literature.
There are many commercial codes available for

solving ¯uid dynamic and heat transfer problems,
such as CFX4.2, UNIC, PHOENICS, etc. Those
codes can be used to calculate many practical but

di�cult direct thermal problems. If one can device
an inverse algorithm, which has the ability to com-
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municate with those commercial codes by means of

data transportation, a generalized 3D inverse heat

transfer problem can thus be established. Huang

and Wang [9] have applied the above idea to a 3D

inverse heat conduction problem in estimating the

surface heat ¯uxes in any irregular domain and

obtained good estimations.

The objective of the present study is to utilize the

CFX4.2 code as the subroutine in solving the 3D

inverse forced convection problems by Conjugate

Gradient Method (CGM). CFX 4.2 is available

from AEA technology [10] and the method of con-

trol volume is used to solve the thermal problems.

The CGM is also called an iterative regularization

method, which means the regularization procedure is

performed during the iterative processes and thus the

determination of optimal regularization conditions is

not needed. The present work addresses the develop-

ments of the conjugate gradient algorithms for estimat-

ing unknown boundary heat ¯uxes in a 3D forced

convection problem. The conjugate gradient method

derives from the perturbation principles and trans-

forms the inverse problem to the solution of three pro-

blems, namely, the direct, sensitivity and the adjoint

problem. These three problems are solved by CFX4.2

and the calculated values are used in CGM for inverse

calculations. The bridge between CFX4.2 and CGM is

the INPUT/OUTPUT ®le. Those ®les should be

arranged such that CFX and CGM can recognize their

format. Moreover, the Fortran compiler Visual For-

tran 6.0 [11] is used to compile the main program since

it's subroutine SYSTEM has the ability to switch the

computational environment from main program to
CFX.

Finally, the inverse solutions for two transient heat
convection problems with irregular duct geometry and
di�erent boundary conditions will be illustrated to

show the validity of using the CGM in the present 3D
inverse convection problem.

2. The direct problem

To illustrate the methodology for developing ex-
pressions for use in determining unknown surface heat

¯ux in an irregular duct ¯ow problem by CGM and
CFX4.2, we consider the following a three-dimensional
inverse forced convection problem. For a duct domain

O, the initial temperature is equal to T0: When t > 0
we assumed that there is an inlet ¯uid with velocity V

and temperature T1 on inlet surface S1: The boundary

condition on S2 is of the third kind with heat transfer
coe�cient h and ambient temperature T1: The bound-
ary conditions on the remaining surfaces S3, S4 and S5

are all assumed insulated, while surface S6 (upper sur-

face) is subjected to an unknown heat ¯ux q�S6, t�,
which is a function of surface positions and time.
Fig. 1(a) shows the geometry and the coordinates for

the three-dimensional physical problem considered
here. We should note that the wall thickness is neg-
lected and therefore the thermal conduction is also

neglected in the present study.
The mathematical formulation of this linear heat

convection problem is given by:

Nomenclature

Cp heat capacity

f body force

h heat transfer coe�cient

J functional de®ned by Eq. (6)

J 0 gradient of functional de®ned by Eq. (15a)

k thermal conductivity

M number of measurement data

p direction of descent de®ned by Eq. (7b)

P pressure

q unknown surface heat ¯ux

T calculated temperature

DT solution of sensitivity problem

u, v, w velocity in x-, y- and z-directions, respect-

ively
V velocity vector

Y measured temperature

Greek symbols
b search step size de®ned by Eq. (10)
g conjugate coe�cient de®ned by Eq. (7c)

O computational domain
l solution for adjoint problem
o random number

e convergence criteria
s standard deviation of the measurement

errors

r density
n kinematic viscosity of ¯uid
m viscosity
F viscous heating term

d�� the Dirac delta function

Superscript

^ estimated values
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Here f is the body force, r is the density, P is the
pressure and n is the kinematic viscosity of ¯uid. The

above properties are all assumed constant.
Energy equation
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Subjected to the following boundary conditions

T � T1 on S1, t > 0 �3b�
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Here Cp is the heat capacity, k is the thermal conduc-
tivity, m is the viscosity, and F is the viscous heating

term, given as
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By letting the following notations,
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where D=Dt is the substantial derivative and r2 is the

Laplace operator. The energy equation can be simpli-
®ed as

rCp
DT

Dt
� kr2�T� � mF in O, t > 0 �5c�

The solution for the above 3D transient forced convec-
tion problem in an irregular duct domain O is solved

Fig. 1. The geometry and coordinates (a) and the grid system

(b) for the test case 1.
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by calling CFX4.2 and its Fortran subroutine
USRBCS in the main program. The direct problem

considered here is concerned with the determination of
the ¯ow velocity ®eld and ¯uid temperature when all
the boundary conditions at all boundaries are known.

3. The inverse problem

For the inverse problem, the boundary heat ¯ux on
S6 is regarded as being unknown, but everything else

in Eqs. (1)±(3) is known. In addition, temperature
readings taken at some appropriate locations and time
on S5 are considered available.

Let the temperature reading taken on S5 be denoted
by Y�S5, t� � Y�xm, ym, zm, t� � Ym�t�, m � 1 to M,
where M represents the number of measured tempera-
ture extracting points. We note that the measured tem-

perature Ym�t� contain measurement errors. Then the
inverse problem can be stated as follows: by utilizing
the above-mentioned measured temperature data,

Ym�t� estimate the unknown boundary heat ¯ux
q�S6, t�:
The solution of the present inverse problem is to be

obtained in such a way that the following functional is
minimized:

J
�
q�S6, t�

� � �tf
t�0

XM
m�1

�
T�xm, ym, zm, t�

ÿ Y�xm, ym, zm, t�
�2

dt

�
�tf
t�0

XM
m�1

�
Tm�t� ÿ Ym�t�

�2
dt �6�

here, Tm�t� are the estimated or computed tempera-
tures at the measured temperature extracting locations

�xm, ym, zm� at time t. These quantities are determined
from the solution of the direct problem given pre-
viously by using an estimated q̂�S6, t� for the exact

q�S6, t�: Here the hat ``^'' denotes the estimated quan-
tities and tf is the ®nal time.

4. Conjugate gradient method for minimization

The following iterative process based on the conju-
gate gradient method [12] is now used for the esti-
mation of unknown heat ¯ux q�S6, t� by minimizing
the functional J�q�S6, t��

q̂n�1�S6, t� � q̂n�S6, t� ÿ bnPn�S6, t� for

n � 0, 1, 2, . . .
�7a�

where bn is the search step size from iteration n to iter-
ation n� 1, and Pn�S6, t� is the direction of descent

(i.e. search direction) given by

Pn�S6, t� � J 0n�S6, t� � gnPnÿ1�S6, t� �7b�
which is a conjugation of the gradient direction

J 0 n�S6, t� at iteration n and the direction of descent
Pnÿ1�S6, t� at iteration nÿ 1: The conjugate coe�cient
is determined from

gn �

�tf
t�0

�
S6

�J 0n �2 dS6 dt�tf
t�0

�
S6

�J 0nÿ1 �2 dS6 dt

with g0 � 0 �7c�

We note that when gn � 0 for any n, in Eq. (7b), the
direction of descent Pn�S6, t� becomes the gradient
direction, i.e. the ``Steepest descent'' method is

obtained. The convergence of the above iterative pro-
cedure in minimizing the functional J is guaranteed in
[13].
To perform the iterations according to Eq. (7a), we

need to compute the step size bn and the gradient of
the functional J 0n�S6, t�: In order to develop ex-
pressions for the determination of these two quantities,

a ``sensitivity problem'' and an ``adjoint problem'' are
constructed as described below.

4.1. Sensitivity problem and search step size

The direct problem considered here is a forced con-
vection problem and the properties of ¯uid are all

assumed constant. For this reason when perturbing the
unknown heat ¯ux, the continuity and momentum
equations remain unchanged. This implies that we do
not have to recalculate the velocity ®eld in the sensi-

tivity problem.
The energy equation for the sensitivity problem is

obtained from the original direct problem de®ned by

Eq. (3) in the following manner: It is assumed that
when q�S6, t� undergoes a variation Dq, T is perturbed
by DT: Then replacing in the direct problem q by q�
Dq and T by T� DT, subtracting from the resulting
expressions the direct problem and neglecting the sec-
ond-order terms, the following sensitivity problem for

the sensitivity function DT are obtained.

rCp

DDT
Dt
� kr2�DT� in O, t > 0 �8a�

DT � 0 on S1, t > 0 �8b�

ÿk@DT
@n
� hDT on S2, t > 0 �8c�
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@DT
@n
� 0 on S3 to S5, t > 0 �8d�

k
@DT
@n
� Dq�S6, t� on S6, t > 0 �8e�

DT � 0 in O, t � 0 �8f�
The CFX 4.2 is used to solve this sensitivity problem.

The functional J�q̂n�1� for iteration n� 1 is obtained
by rewriting Eq. (6) as

J
ÿ
q̂n�1

�
�
�tf
t�0

XM
m�1

�
Tm

ÿ
q̂n ÿ bnPn

�ÿ Ym

�2
dt �9a�

where we replaced q̂n�1 by the expression given by Eq.
(7a). If temperature Tm�q̂n ÿ bnPn� is linearized by a

Taylor expansion, Eq. (9a) takes the form

J
ÿ
q̂n�1

�
�
�tf
t�0

XM
m�1

�
Tm

ÿ
q̂n
�ÿ bnDTm�Pn � ÿ Ym

�2
dt �9b�

where Tm�q̂n� is the solution of the direct problem

by using estimate q̂n for exact q at �xm, ym, zm� and
time t. The sensitivity functions DTm�Pn� are taken
as the solutions of problem (8) at the measured

temperature extracting positions �xm, ym, zm� and time
t by letting Dq � Pn: The search step size bn is
determined by minimizing the functional given by Eq.

(9b) with respect to bn: The following expression
results:

bn �

�tf
t�0

XM
m�1

�
Tm�t� ÿ Ym�t�

�
DTm�t� dt�tf

t�0

XM
m�1

�
DTm�t�2

�
dt

�10�

4.2. Adjoint problem and gradient equation

The continuity and momentum equations for the
adjoint problem are the same as in the direct problem

for the reason stated before. To obtain the energy
equation for the adjoint problem, Eq. (3a) is multiplied
by the Lagrange multiplier (or adjoint function) l�x, y,
z, t� and the resulting expression is integrated over
the correspondent space and time domains. Then the
result is added to the right-hand side of Eq. (6) to

yield the following expression for the functional
J �q�S6, t��:

J
�
q�S6, t�

� � �tf
t�0

�
S5

�Tÿ Y�2d�xÿ xm �d�yÿ ym �
� d�zÿ zm � dS5 dt

�
�tf
t�0

�
O
l

�
kr2Tÿ rCp

DT

Dt

�
dO dt �11�

The variation DJ is obtained by perturbing q by Dq
and T by DT in Eq. (11), subtracting from the result-
ing expression the original Eq. (11) and neglecting the
second-order terms. We thus ®nd

DJ �
�tf
t�0

�
S5

2�Tÿ Y�DTd�xÿ xm �d�yÿ ym �d�zÿ zm �

� dS5 dt�
�tf
t�0

�
O
l

�
kr2�DT� ÿ rCp

DDT
Dt

�
dO dt

�12�

where d��� is the Dirac delta function and �xm, ym, zm),
m � 1 to M, refer to the measured temperature extract-
ing positions. In Eq. (12), the domain integral term

containing Laplace operator is reformulated based on
the Green's second identity, the domain integral term
containing substantial derivative is reformulated based

on the Reynold's second transport theorem; the
boundary conditions of the sensitivity problem given
by Eqs. (8b)±(8e) are utilized.

The vanishing of the integrands containing DT leads
to the following adjoint problem for the determination
of l�x, y, z, t�:

rCp
Dl
Dt
� kr2�l� � 0 in O, t > 0 �13a�

l � 0 on S1, t > 0 �13b�

ÿk@l
@n
� l

ÿ
h� rCpV � n� on S2, t > 0 �13c�

@l
@n
� 0 on S3 and S4, t > 0 �13d�

k
@l
@n
� 2�Tÿ Y�d�xÿ xm �d�yÿ ym �d�zÿ zm �

on S5, t > 0

�13e�

@l
@n
� 0 on S6, t > 0 �13f�

l � 0 in O, t � tf �13g�
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Here V and n are the velocity and normal unit vectors,
respectively. The adjoint problem is di�erent from the

standard initial value problems in that the ®nal time
conditions at time t � tf is speci®ed instead of the cus-
tomary initial condition. However, this problem can be

transformed to an initial value problem by the trans-
formation of the time variables as t � tf ÿ t: Then
the CFX4.2 can be used to solve the above adjoint

problem.
Finally, the following integral term is left

DJ �
�tf
t�0

�
S6

lDq�S6, t� dS6 dt �14a�

From de®nition [12], the functional increment can be

presented as

DJ �
�tf
t�0

�
S6

J 0
�
q�S6, t�

�
Dq�S6, t� dS6 dt �14b�

A comparison of Eqs. (14a) and (14b) leads to the fol-
lowing expression for the gradient of functional

J 0�q�S6, t�� of the functional J�q�S6, t��:

J 0
�
q�S6, t�

� � l�x, y, z�jon S6
�15a�

We note that the gradient J 0 on inlet surface S1 and at
®nal time t � tf are always equal to zero since
l�S1, tf � � 0 and l�O, tf� � 0: If the initial guess values

of q0 cannot be predicted correctly before the inverse
calculation, the estimated values of heat ¯ux q will de-
viate from exact values near the inlet surface and ®nal

time conditions. This is the case in the present study!
Now the arti®cial gradients at the interface of S1 and
S6 and ®nal time are de®ned as follows

J 0�S6, t� � ÿl�S6 � Dx, t�jon S1\S6
�15b�

J 0�S6, tf � � l�S6, tf ÿ Dt� �15c�
where Dx and Dt denote the space and time increment
used in CFX4.2.

By using the arti®cial gradient equations (15b) and
(15c) in the gradient equation (15a), the singularity on
inlet surface S1 and at ®nal time t � tf can be avoided

in the present study and a reliable inverse solution can
be obtained.

4.3. Stopping criterion

If the problem contains no measurement errors, the

traditional check condition is speci®ed as

Jbq̂n�1�S6, t�c < e �16a�
where e is a small-speci®ed number. However, the
observed temperature data may contain measurement

errors. Therefore, we do not expect the functional
equation (6) to be equal to zero at the ®nal iteration

step. Following the experiences of the authors [6,9], we
use the discrepancy principle as the stopping criterion,
i.e. we assume that the temperature residuals may be

approximated by

Tm�t� ÿ Ym�t�1s �16b�
where s is the standard deviation of the measurements,

which is assumed to be a constant. Substituting Eq.
(16b) into Eq. (6), the following expression is obtained
for stopping criteria e:

e �Ms2tf �16c�
Then, the stopping criterion is given by Eq. (16a) with
e determined from Eq. (16c).

5. Computational procedure

The computational procedure for the solution of this
inverse problem using conjugate gradient method may
be summarized as follows:

Suppose q̂n�S6, t� is available at iteration n.

Step 1. Solve the direct problem given by Eqs. (1)±
(3) for T�x, y, z, t�:
Step 2. Examine the stopping criterion given by Eq.
(16a) with e given by Eq. (16c). Continue if not sat-
is®ed.

Step 3. Solve the adjoint problem given by Eq. (13)
for l�x, y, z, t�:
Step 4. Compute the gradient of the functional J 0

from Eq. (15).
Step 5. Compute the conjugate coe�cient gn and
direction of descent Pn from Eqs. (7c) and (7b), re-

spectively.
Step 6. Set Dq � Pn, and solve the sensitivity prob-
lem given by Eq. (8) for DT�x, y, z, t�:
Step 7. Compute the search step size bn from

equation (10).
Step 8. Compute the new estimation for q̂n�1 from
Eq. (7a) and return to Step 1.

6. Results and discussion

The objective of this work is to show the validity of

the CGM in estimating the boundary heat ¯ux q�S6, t�
in the inverse forced convection problems with no
prior information on the functional form of the

unknown quantities.
To illustrate the accuracy of the conjugate gradient

method in predicting boundary heat ¯ux q�S6, t� in an
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arbitrary duct domain O with 3D inverse analysis from
the knowledge of transient temperature recordings,

two speci®c examples having di�erent form of heat
¯uxes and duct domains are considered here.
In order to compare the results for situations in-

volving random measurement errors, we assume nor-
mally distributed uncorrelated errors with zero mean
and constant standard deviation. The simulated inexact

measurement data Y can be expressed as

Y � Yexact � os �17�

where Yexact the solution of the direct heat convection
problem with an exact boundary heat ¯ux q�S6, t�; s is
the standard deviation of the measurements; and o is

a random variable that is generated by subroutine
DRNNOR of the IMSL [14] and will be within ÿ2.576
to 2.576 for a 99% con®dence bound.

One of the advantages of using the conjugate gradi-
ent method to solve the inverse problems is that the in-
itial guesses of the unknown quantities can be chosen
arbitrarily. In all the test cases considered here, the in-

itial guesses of q̂�S6, t� is taken as q̂�S6, t�initial � 0:0:

6.1. Numerical test case 1

The geometry for the test case 1 is shown in
Fig. 1(a), which represents an arbitrarily irregular
domain having thin uniform thickness in z direction. If

this thickness is more, the estimated ¯uxes may be
damped (This matter will be discussed later).

The parameters that used in the present study are
taken as V = u = 0.1, k � 1, r � 1, Cp = 1, m � 1, h
= 1, T1 � 1 and T0 � 0: The boundary conditions on

S3, S4 and S5 (bottom surface) are all insulated, the
boundary conditions on S1 and S2 are subjected to
®rst and third kind conditions, respectively, while a

unknown heat ¯ux q�S6, t� is prescribed on S6 (upper
surface). The grids along x, y and z directions are all
taken as 10. Time interval is chosen as 15 i.e. tf � 15,

and a time step Dt � 1 is used. Therefore, a total of
1500 unknown discretized heat ¯uxes are to be deter-

mined in the present study. The number of measured
temperature-extracting positions M is taken as 100.
The grid system for test case 1 is shown in Fig. 1(b).

We now present below the numerical experiments in
determining q�S6, t� by the inverse analysis using the
CGM.

Fig. 3. The estimated 3D plot for heat ¯ux q�S6, t� at t � 3

and 7 by using s � 0:0 and u � 0:1:
Fig. 2. The exact 3D plot of heat ¯ux q�S6, t� for test case 1

at t � 3 and 7.
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The unknown transient boundary heat ¯ux q�S6, t�
(or q�I, J, t�� on S6 is assumed as

q1�I, J, t� � 80� sin

�
t

tf
p
�
,

1RIR10
1RJR10

15rtr0

q2�I, J, t� � 60� sin

�
t

tf
p
�
,

3RIR8
3RJR8

15rtr0

q3�I, J, t� � ÿ30� sin

�
t

tf
p
�
,

5RIR6
5RJR6

15rtr0

q�I, J, t� � �q1 � q2 � q3 �, in O 15rtr0

�18�
where I and J represent the grid index on surface S6:
It is obvious from Eq. (18) that q�S6, tf� � 0 due to
sinusoidal function. Since q̂�S6, t�initial � 0:0, we con-

cluded that the singularity at ®nal time tf will not hap-
pen in this case and accurate inverse solutions can be
obtained. The exact 3D plot for q�S6, t� at t � 3 and 7

is shown in Fig. 2.
The inverse analysis is ®rst performed by assuming

exact measurements, s � 0:0: The estimated 3D plot

for q�S6, t� after 60 iterations at t � 3 and 7 is shown
in Fig. 3. It can be seen from Fig. 3 that the esti-

mations are accurate except for the locations of discon-
tinuity. The average error for this case is calculated as

3.75% where the average error for the estimated heat
¯ux is de®ned as

Average error

% �
"X10

I�1

X10
J�1

Xtf
t�1
jq�I, J, t� ÿ q̂�I, J, t�

q�I, J, t� j
#
� �10

� 10� tf � � 100%

�19�

here I and J represent the index of discreted unknown
heat ¯uxes on S6 and t denotes the index of discrete

time, while q�I, J, t� and q̂�I, J, t� denote the exact and
estimated values of boundary heat ¯ux.
Next, let's discuss the in¯uence of varying the inlet

velocity on the inverse solutions. The inverse calcu-
lations for u � 0:2 is then performed and 3D plot for
the estimated heat ¯ux at t � 3 and 7 is shown in

Fig. 4. It is obvious that the estimated heat ¯ux is not
that accurate as was for u � 0:1: The reason for this is
because when the inlet velocity is increased, the infor-
mation for q�S6, t� on the measurement surface S5 is

Fig. 5. The estimated 3D plot for heat ¯ux q�S6, t� at t � 3

and 7 by using s � 0:0, u � 0:1 and tripled thickness in z-

direction.

Fig. 4. The estimated 3D plot for heat ¯ux q�S6, t� at t � 3

and 7 by using s � 0:0 and u � 0:2:

C.-H. Huang, W.-C. Chen / Int. J. Heat Mass Transfer 43 (2000) 3171±31813178



damped due to the fact that more energy is carried
away by the ¯uid. The average error for this case is

calculated as 8.86%.
What will happen when the thickness in z-direction

is increased? To test this situation we perform another

numerical experiment by assuming that the thickness
in z-direction is tripled (letting u � 0:1). The estimation
for q�S6, t� must be worse than as shown in Fig. 3

since the information for q�S6, t� on the measurement
surface S5 is damped due to the fact that the thickness
is increased. The 3D plot for the estimated heat ¯ux at

t � 3 and 7 is shown in Fig. 5 and the average error
for this case is calculated as 12.15%.
Finally, let's discuss the in¯uence of the measure-

ment errors on the inverse solutions for u � 0:1 and

thin thickness in z-direction (original thickness). First,
the measurement error for the temperatures measured
by sensors is taken as s � 8:0 (about 1.5% of the aver-

age measured temperature), then error is increased to
s � 16:0 (about 3.0% of the average measured tem-
perature). The estimated 3D plot for q�S6, t� at t � 3

and 7 is shown in Figs. 6 and 7, respectively, where
the average error in Fig. 6 is 7.22% and in Fig. 7
9.54%. The stopping criteria e is calculated from Eq.

(16c) and the number of iterations are 33 and 23 for

Fig. 7. The estimated 3D plot for heat ¯ux q�S6, t� at t � 3

and 7 by using s � 16:0 and u � 0:1:

Fig. 8. The geometry and coordinates (a) and the grid system

(b) for the test case 2.

Fig. 6. The estimated 3D plot for heat ¯ux q�S6, t� at t � 3

and 7 by using s � 8:0 and u � 0:1:
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Fig. 10. The estimated 3D plot for heat ¯ux q�S6, t� at t � 3

and 7 by using s � 0:0 and u � 0:1:
Fig. 9. The exact 3D plot of heat ¯ux q�S6, t� for test case 2

at t � 3 and 7.

the above two test cases. This implies that reliable
inverse solutions can still be obtained when measure-

ment errors are considered.

6.2. Numerical test case 2

The geometry for test case 2 is now considered as a
non-uniform thickness in z-direction and is shown in

Fig. 8(a), while the grid system is shown in Fig. 8(b).
The parameter used in this test case are the same as
were used in test case 1. The unknown boundary heat

¯ux q�S6, t� is assumed as

q�I, J, t� � 4� sin

�
t

15
p
�
�
�
20ÿ �8ÿ I�2ÿ�3ÿ J�2

�
� 20,

5RIR10
1RJR5

15rtr0

q�I, J, t� � 7:5� sin

�
t

22
p
�
�
�
17ÿ �2ÿ I�2ÿ�7ÿ J�2

�
� 22,

1RI < 5
5 < JR10

15rtr0

q�I, J, t� � 20, else 15rtr0

�20�

The exact 3D plot for q�S6, t� at t � 3 and 7 is shown in

Fig. 9. One should note that in test case 2 we still use
q̂�S6, t�initial � 0:0, but now q�S6, tf �6�0, therefore, we
concluded that the singularity at ®nal time tf will happen

in this case and the modi®ed gradient at ®nal time in
Eq. (15c) must be used to overcome this singularity.

However, the inverse solutions near ®nal time under
this consideration are still not accurate, therefore, the

estimated heat ¯ux at the last few time steps are going to
be discarded to ensure good estimations are obtained.
In test case 2, the estimated q̂�S6, t� is chosen up to

t � 12 and the remaining three time steps are neg-
lected. The inverse problem with CGM is ®rst calcu-
lated by using exact measurements, i.e. s � 0:0: After

60 iterations the 3D plot for the estimated boundary
heat ¯ux q�S6, t� at t � 3 and 7 is shown in Fig. 10. It
is obvious that the estimated q�S6, t� for the present

inverse solutions is not that accurate when comparing

with test case 1. The reason for this is because a non-

uniform thickness and thicker thickness are considered
in the present case. The average errors for CGM is
6.92% in this case.

Next when considering measurement errors s � 8:0
(about 4.0% of the average measured temperature),
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the estimated inverse solutions are shown in Fig. 11.

The average errors for CGM is 10.58% for this case.
From the above two test cases we learned that a 3D

inverse forced convection problem in estimating

unknown boundary heat ¯ux is now completed. Re-
liable estimations can be obtained when using either
exact or error measurements.

7. Conclusions

The Conjugate Gradient Method (CGM) along with
the CFX-4.2 was successfully applied for the solution
of the three-dimensional inverse forced convection

problem to determine the unknown transient boundary
heat ¯ux in an irregular duct domain by utilizing simu-
lated temperature readings obtained from sensors. Sev-
eral test cases involving di�erent shape of duct, duct

thickness, inlet velocity, measurement errors and heat
¯uxes were considered. The results show that the
inverse solutions obtained by CGM remain stable and

regular as the measurement errors are increased.
From the numerical test cases in the present study,

we concluded that the use of CFX-4.2 as the subrou-

tine in the 3D inverse forced convection problem in
estimating the unknown boundary heat ¯ux with the

conjugate gradient method has been done successfully.
By using the same algorithm, many practical but di�-

cult 3D inverse convection problems can also be
solved.
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